Negative regulation of catalase gene expression in hepatoma cells.

نویسندگان

  • K Sato
  • K Ito
  • H Kohara
  • Y Yamaguchi
  • K Adachi
  • H Endo
چکیده

For an understanding of the molecular basis of the marked decrease in catalase activity of various tumor cells, expression of the catalase gene was studied in rat and human hepatoma cell lines and in rat liver, which was used as a control with high activity. RNA blot hybridization profiles and run-on assays indicated that the decrease in catalase activity was due to depression of catalase gene transcription. Chloramphenicol acetyltransferase (CAT) assays for the fragments with various lengths of the 5'-flanking region (up to -4.5 kb from the ATG codon) of the catalase gene revealed the presence of several cis-acting elements involved in the negative regulation of transcription. The most-upstream element with the strongest activity (-3504 to -3364 bp), when linked to the catalase promoter region (-126 bp) of the CAT construct and subjected to an in vitro transcription assay, did not yield transcripts in experiments with the hepatoma nuclear extract, whereas the unlinked template did yield transcripts. A gel shift competition assay using hepatoma nuclear extract showed the core sequence of the silencer element to be 5'-TGGGGGGAG-3'. A homology search found that the same core sequence was also present in 5'-flanking regions of the albumin gene and of some other liver enzyme genes, the expression of which has been reported to be down regulated in some hepatoma cells. Southwestern (DNA-protein) analysis demonstrated that an approximately 35-kDa nuclear protein bound to the silencer element was present in hepatoma cells but not in rat liver cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gene Expression under F8 Promoter Driving In Mouse Hepatoma Cells: A Step towards Gene Therapy of Hemophilia

Background and Objectives: Significant progress has been made in treatment of hemophilia. Ex-vivo gene therapy is going popular due to the capability of this method in using isogenic cells for genetic manipulation and reintroducing them into same host after proliferation. Most gene therapy techniques use viral vectors, which usually harbor a strong and non-specific promoter (e...

متن کامل

Expression of CXC Chemokines Gro/KC and SDF-1a in Rat H4 Hepatoma Cells in Response to Different Stimuli

Background: It is now well established that several environmental stress factors cause activation of p38 MAP kinase and JNK in various cell types to produce chemokines. Objective: To investigate the expression of CXC chemokines Gro/KC and SDF- 1a in rat's H4 hepatoma cells in response to heat shock, hyperosmolarity and oxidative stress. Methods: Hepatoma cells were maintained in MEM medium. Cel...

متن کامل

Effects of Crocin Down-Regulation on Enzymatic Antioxidant Profile in C2C12 Cells

such as the process of cellular respiration, which is scavenged by enzymatic and non-enzymatic antioxidant systems. Intake of antioxidants from food sources has always been considered in nutrition research. Therefore, the aim of the present study was to investigate antioxidant effects of crocin on the expression profile of genes involved in the enzymatic antioxidant systems in muscle cells.  Ma...

متن کامل

Involvement of c-Met- and phosphatidylinositol 3-kinase dependent pathways in arsenite-induced downregulation of catalase in hepatoma cells.

Catalase protects cells from reactive oxygen species-induced damage by catalyzing the breakdown of hydrogen peroxide to oxygen and water. Arsenite decreases catalase activity; it activates phosphatidylinositol 3-kinase (PI3K) and its key downstream effector Akt in a variety of cells. The PI3K pathway is known to inhibit catalase expression. c-Met, an upstream regulator of PI3K and Akt, is also ...

متن کامل

Potential roles of 5´ UTR and 3´ UTR regions in post-trans-criptional regulation of mouse Oct4 gene in BMSC and P19 cells

Objective(s):OCT4 is a transcription factor required for pluripotency during early embryogenesis and the maintenance of identity of embryonic stem cells and pluripotent cells. Therefore, the effective expression regulation of this gene is highly critical. UTR regions are of great significance to gene regulation. In this study, we aimed to investigate the potential regulatory role played by 5´UT...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 12 6  شماره 

صفحات  -

تاریخ انتشار 1992